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Abstract 

Background: The severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2), causing the coronavirus disease 
2019 (COVID‑19) pandemic, has infected millions of people and caused hundreds of thousands of deaths. While 
COVID‑19 has overwhelmed healthcare resources (e.g., healthcare personnel, testing resources, hospital beds, and 
ventilators) in a number of countries, limited research has been conducted to understand spatial accessibility of such 
resources. This study fills this gap by rapidly measuring the spatial accessibility of COVID‑19 healthcare resources with 
a particular focus on Illinois, USA.

Method: The rapid measurement is achieved by resolving computational intensity of an enhanced two‑step floating 
catchment area (E2SFCA) method through a parallel computing strategy based on cyberGIS (cyber geographic infor‑
mation science and systems). The E2SFCA has two major steps. First, it calculates a bed‑to‑population ratio for each 
hospital location. Second, it sums these ratios for residential locations where hospital locations overlap.

Results: The comparison of the spatial accessibility measures for COVID‑19 patients to those of population at risk 
identifies which geographic areas need additional healthcare resources to improve access. The results also help delin‑
eate the areas that may face a COVID‑19‑induced shortage of healthcare resources. The Chicagoland, particularly the 
southern Chicago, shows an additional need for resources. This study also identified vulnerable population residing in 
the areas with low spatial accessibility in Chicago.

Conclusion: Rapidly measuring spatial accessibility of healthcare resources provides an improved understanding of 
how well the healthcare infrastructure is equipped to save people’s lives during the COVID‑19 pandemic. The findings 
are relevant for policymakers and public health practitioners to allocate existing healthcare resources or distribute 
new resources for maximum access to health services.
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Introduction
A novel coronavirus disease (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2),  has widely spread worldwide. As of April 10, 

2020, about 1.6 million COVID-19 cases have been con-
firmed in the world; and in the United States alone, over 
475,000 people have been infected with more than 17,000 
deaths. Among the infected cases, hundreds of thousands 
of people are hospitalized. The COVID-19 pandemic has 
exceeded the capacities of healthcare resources, includ-
ing for example healthcare personnel, testing resources, 
hospital beds, beds in intensive care units (ICUs) and 
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ventilators [1–3]. This increased demand for healthcare 
resources has caused or exacerbated health disparities 
in access to healthcare [4]. To resolve this demand and 
mitigate the coronavirus, the state of Illinois in the USA 
issued a Disaster Proclamation on March 9, 2020 with the 
following subsequent actions: restricted nursing home 
visit started on March 11; bars and restaurant close for 
on-site consumption started on March 16; remote learn-
ing for students started on March 17; and a Stay-at-Home 
order started on March 21.

A key requirement for our research is to dynamically 
and rapidly measure spatial accessibility of COVID-19 
healthcare resources. Our approach fulfills this require-
ment by achieving the integration of innovative com-
putational strategies and cutting-edge cyberGIS (cyber 
geographic information science and systems) (Wang [28]) 
capabilities to conduct computationally intensive spatial 
accessibility analysis in a timely manner and make analyt-
ical outcome dynamically available for decision-making 
support. While there exist many geospatial data dash-
boards and portals (e.g., COVID-19 Dashboard by Johns 
Hopkins University [5], an interactive map for COVID-19 
hospital capacity by the Harvard Global Health Institute 
[6], and CoronaVis by the Data Analysis and Visualization 
Group at the University of Konstanz in Germany [7] pro-
viding useful information such as the number of cases, 
deaths, tests, and current status of healthcare resources 
[8]), none of the existing approaches has achieved the 
integration aimed in this research.

Oftentimes, SARS-CoV-2 infection cases and related 
healthcare resources in demand are not spatially equi-
tably distributed [9]. In other words, spatial mismatches 
need to be resolved between healthcare resource avail-
ability and the needs of COVID-19 patients and popula-
tion at risk. Identifying these mismatches is crucial for 
allocating healthcare resources efficiently and effectively 
[10]. Ensuring healthcare services are  equitably accessi-
ble to communities has been a major focus in the global 
context of healthcare policy making [11]. Understanding 
spatial accessibility of healthcare services is important to 
the development and allocation of local healthcare ser-
vices [12]. For example, identifying health professional 
shortage areas and medically underserved populations 
has been done extensively by the US Department of 
Health and Human Services (HHS) to determine eligi-
bility for federal healthcare resources [13]. As an exam-
ple at the state level, the Illinois Health Facilities and 
Services Review Board (HFSRB) has highlighted the 
importance of a comprehensive health care delivery sys-
tem that ensures spatial proximity of healthcare facilities 
and accessibility of their services and equipment to com-
munities based on assessment of needs [14]. The Illinois 
Department of Public Health (IDPH) has committed 

significant efforts on improving hospitals’ bed capac-
ity and COVID-19 related resources [15]. Therefore, it is 
important to understand how to conduct rigorous spatial 
accessibility analysis to support healthcare decision mak-
ing across multiple spatial scales.

Measuring spatial accessibility to healthcare resources 
has long been of interest to public health research. 
Examples include healthcare access for seniors [16, 17], 
disabled people [18], cancer-specific survivals [19, 20], 
examining spatial accessibility among populations with 
multiple transportation modes [21, 22], and access to 
specific health care treatments such as mammograms 
[23]. Spatial accessibility of healthcare resources can be 
measured by spatial interactions between the amount of 
supplies (e.g., the number of hospital beds or physicians) 
and demands along with the distance and travel time 
between the locations of healthcare resources and those 
of residential areas.

A commonly used method for measuring spatial acces-
sibility is the two-step floating catchment area (2SFCA) 
method [24]. Particularly, the enhanced two-step floating 
catchment area (E2SFCA) method accounts for distance 
decay [25]. E2SFCA uses travel time for a given mode 
of transportation to calculate the areas that are within 
10, 20, and 30  min of supply locations. For large study 
areas such as the state of Illinois in the USA, calculating 
catchment areas on a road network has high computa-
tional intensity [26]. CyberGIS—defined as geographic 
information science and systems based on advanced 
cyberinfrastructure—is well suited to resolve this type of 
computational intensity through high-performance par-
allel computing [27–29].

Motivated to address this computationally intensity 
challenge, this study aims to rapidly measure the spa-
tial accessibility of healthcare resources in Illinois. Spe-
cifically, we seek to answer the following three research 
questions: (1) to what extent Illinois residents have access 
to healthcare resources during the COVID-19 pandemic? 
(2) which geographic areas have abundant resources and 
which areas have insufficient resources? and (3) to what 
extent the spatial accessibility is associated with socio-
economic and demographic characteristics? To answer 
these questions, spatial accessibility was measured based 
on travel time between the locations of residence and 
healthcare resources in the context of COVID-19 patients 
and population at risk (i.e., people aged over 50  years). 
As of August 14, 2020, there are 7721 COVID-19 deaths 
in Illinois, of which 95% (7296) are residents aged more 
than 50 years (IDPH [30]).

We have developed a parallel enhanced two-step 
floating catchment area (P-E2SFCA) method based on 
CyberGIS-Jupyter—a cyberGIS framework for achiev-
ing data-intensive, reproducible, and scalable geospatial 
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analytics using Jupyter Notebook [31–34]. In our study, 
the demand of healthcare resources comes from either 
COVID-19 patients or vulnerable population. We com-
pared spatial accessibility of healthcare between COVID-
19 patients and population at risk. Social vulnerability 
is often assessed to understand population’s suscepti-
bility to external stresses, such as natural disasters [35, 
36] and disease outbreaks [37, 38] including COVID-
19 [39, 40]. We examine the socioeconomic and demo-
graphic characteristics in the areas with high and low 
accessibility, by leveraging the social vulnerability index 
(SVI) developed by the U.S. Centers for Disease Con-
trol and Prevention (CDC) [41]. Our analysis provides 
insights for decision making to optimize the allocation 
of COVID-19-related healthcare resources, such as hos-
pital beds, testing resources, healthcare personnel, ICU 
beds and ventilators. The rest of the paper is organized 
as follows. The “Data and method” section describes the 
data and method used in the study. Section 3 summarizes 
and evaluates the results obtained from the P-E2SFCA 
method. Section 4 concludes with a discussion about pol-
icy implications and future directions.

Data and method
Study area and data
This study focuses on spatial accessibility of healthcare 
resources for the general population and COVID-19 
patients in Illinois, USA. We used four types of datasets, 
summarized as follows: (1) hospital dataset, including 

the number of beds in intensive care units (ICUs) and 
the number of ventilators in each hospital, (2) COVID-
19 confirmed case dataset, (3) residential dataset, and (4) 
road network dataset. The hospital dataset was provided 
by IDPH. The U.S. Homeland Infrastructure Foundation 
Level Data (HIFLD) Subcommittee provides national-
level geospatial data that can be used in supporting 
community preparedness and research. The COVID-19 
confirmed case dataset at the zip code level is provided 
by IDPH [30]. The residential dataset was obtained from 
the United States Census Bureau. We used an Application 
Programming Interface (API) call for pulling data from 
the 2018 American Community Survey 5-year detail 
table for each census tract in the state of Illinois, USA. 
The road network dataset was retrieved using a Python 
package OSMnx [42], which helped us to download and 
analyze street networks from the OpenStreetMap.

In Illinois, there are 183 hospitals from which the infor-
mation of beds is available in the dataset. We excluded 
some hospitals, including military, children, psychiatric, 
and rehabilitation in this study, because these types of 
hospitals may not provide health services to COVID-19 
patients. Figure  1a illustrates the spatial distribution of 
ICU beds with the population across Illinois. Figure  1b 
shows the spatial distribution of ventilators with the 
COVID-19 confirmed cases in Illinois as of April 10, 
2020. Obviously, the population in Illinois is dense in the 
Chicago area, and significant clustering of the COVID-
19 cases have occurred in Chicago. As of April 10, 2020, 

Fig. 1 Datasets of hospital, population, COVID‑19 cases in Illinois: a spatial distributions of ICU beds and population at risk; b spatial distributions of 
ventilators and confirmed COVID‑19 cases
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about 18,000 COVID-19 cases  were confirmed out of 
about 88,000 tests. In Chicago, there are 66 hospitals in 
which beds are available for the patients and general pop-
ulation (Fig. 2a). The hospitals within 15 miles of buffer 
zone (about 30 min travel time) from the Chicago bound-
ary were included [24], which helps to take into account 
that people living near the Chicago boundary may seek 
hospitals near to Chicago. As of April 10, 2020, there 
were about 7600 confirmed COVID-19 cases (Fig. 2b). 

CDC’s SVI can serve as an indicator of vulnerable pop-
ulations in the USA based on socioeconomic and demo-
graphic characteristics at the census-tract level with four 

themes:  socioeconomic status, household composition 
and disability, minority status and languages, and housing 
and transportation (Table 1) [36]. SVI scores range from 
0 to 1 with a value of 1 indicating the most vulnerable.

Parallel enhanced two‑step floating catchment area 
(P‑E2SFCA) method
The conventional two-step floating catchment area 
(2SFCA) method is based on a service-to-population 
ratio computed in two steps [24, 43]. First, it is to find all 
people (i) located within a catchment area of each health-
care (j), as shown in Fig.  3a. A catchment area is based 

Fig. 2 Datasets of hospitals, population, COVID‑19 cases in Chicago, Illinois: a spatial distributions of ICU beds and population at risk, and b spatial 
distributions of ventilators and confirmed COVID‑19 cases. To avoid the edge effects, we included hospitals located within 15 miles from the 
Chicago boundary. 15 miles are considered based on estimated average travel time of about 30 min [24]

Table 1 Social vulnerability index theme and variables

SVI theme Variables

Socioeconomic status % Below poverty level
% Unemployed
Per Capita Income
% Age 25 or older with no high school diploma

Household composition & disability % Age 65 or older
% Age 17 or younger
% Single parent household

Minority status & languages % Minority
% Age 5 or older speak english “less than well”

Housing & transportation % Multi‑unit structure
% Mobile homes
% Crowding (more people than rooms)
% Households without a vehicle
% In institutionalized group quarters
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on a threshold travel time (d0). Then, a service-to-popu-
lation rate Rj is computed within a catchment area. 

where for the number of available resources(s) at each 
healthcare (j), find all population locations (k) that fall 
within a threshold travel distance (d0).

Then, the accessibility Ai at a residential location i is 
computed by summing up the service-to-population 
ratios, as shown in Fig. 3b.

where i denotes a residential location, and Rj is the pro-
portion of services per person at healthcare location j 
whose centroids are located within the catchment area.

As a relative measurement, the accessibility meas-
urement Ai indicates which geographic areas are rela-
tively more accessible than other areas. For example, 
overlapped areas in Fig. 3b may have a relatively higher 
accessibility than other areas. The areas that do not fall 
within catchment areas of any hospitals have no access 
to any hospitals within a predetermined travel time (e.g., 
30 min).

To fully take into account that people may be more 
likely to visit closer hospitals than others, an enhanced 

(1)Rj =
Sj∑

k∈{dij≤d0} Pk

(2)
Ai =

∑

j∈{dij≤d0}

Rj

two-step floating catchment area (E2SFCA) method was 
developed [25] to resolve the limitation about no distance 
decay within a catchment area (i.e., residents in the same 
catchment area are assumed to have equal spatial acces-
sibility). The  E2SFCA method  accounts for the distance 
decay, by allowing for multiple travel time zones, such 
as 0–10, 10–20, and 20–30 min. Three values of weights 
(1, 0.68, and 0.22) were applied to each travel time zone 
(0–10, 10–20, and 20–30 min), respectively [25]. Spatial 
accessibility is therefore computed as a summation of the 
measure of accessibility at each travel interval.

where Ai denotes the accessibility of people at location 
i to hospitals, and the proportions of service-to-popu-
lation Rj at healthcare locations j whose centroids are 
located within the catchment area. Wr denotes the dis-
tance weight for rth travel intervals.

Figures  4 and 5a show the algorithm and workflow 
of the E2SFCA method using ICU beds and ventila-
tors as a case of healthcare resources, respectively. The 
method has two major steps: calculating an ICU bed (or 
ventilator)-to-population ratio for each supply location 
(lines 5–14 in Fig. 4) and then summing these ratios for 
residential locations where supply regions overlap (lines 
15–20 in Fig. 4). Since we aim to measure the accessibility 

(3)

Ai =
∑

j∈(dij∈D1)

RjW1 +
∑

j∈(dij∈D2)

RjW2 +
∑

j∈(dij∈D3)

RjW3

Fig. 3 Measure spatial accessibility of a set of hospitals: a delineate the catchment area of each hospital; and b sum up the accessibility value at 
residential locations
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for population at risk and COVID-19 patients, we calcu-
lated a bed-to-population ratio and a bed-to-COVID-
19-patients ratio, separately. The first step delineates a 
hospital’s 30-min driving zone through a convex hull. It is 
sub-segmented into 0–10, 10–20, and 20–30 min driving 
zones. These zones are used to calculate a bed-to-popu-
lation ratio using a weighted sum of residential locations 
within each hospital’s catchment area following Eq.  (3). 
Lastly, the accessibility measurements are aggregated 
into hexagon grids (Fig. 6).

To easily aggregate the accessibility measurements of 
hospitals, we express the accessibility measurement on 
regular grids, as shown in Fig. 6. To minimize orientation 
bias from edge effects, we use hexagon grids, instead of 
rectangular grids. Each hospital’s catchment area within 

each driving zone can be expressed on hexagon grids. 
If there are overlapping catchment areas, the values at 
each hexagon grid are aggregated. Specifically, we used 
500-meter hexagon grids for Chicago and 5-km hexa-
gon grids for Illinois. In Chicago, about 400 meters are 
the shortest distance between zip code centroids. There-
fore, 500-meter hexagon grids are sufficient to repre-
sent the accessibility measure. Considering the relatively 
large area of Illinois, 5-km hexagon grids are suitable for 
depicting the accessibility measure.

The E2SFCA algorithm is computationally intensive. 
As described in line 7 of Fig.  4, calculating the catch-
ment area of each hospital involves determining an ego-
centric network within a specified driving time using a 
shortest-path algorithm [44] to compute shortest paths 

Fig. 4 E2SFCA algorithm
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from a source node. The time complexity of our algo-
rithm is O(C|E| + C|V|log|V|) where C is the number 
of catchments (number of hospitals times number of 
travel times), |V| is the number of vertices, and |E| is 
the number of edges in the OSMnx network [42]. This 
complexity is derived based on running the Dijkstra’s 

shortest-path algorithm for each catchment and travel-
time. This complexity poses a significant computational 
challenge because even after removing nodes with no 
outdegree and small (less than 10 nodes) strongly con-
nected components, the Chicago street network alone 
has 28,373 nodes and 75,797 edges all with a wide variety 

Fig. 5 Computational workflows: a E2SFCA; and b P‑E2SFCA

Fig. 6 Expression of accessibility measures on hexagon grids. Note: Darker colors represent areas with higher accessibility. The values of hexagons 
are determined by Ai from Eq. (2)
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of attributes available from OpenStreetMap, which can 
be collected by using OSMnx python library. This type 
of network-based analysis is notoriously difficult for GIS 
and spatial analysis as it has high computational com-
plexity and takes a prohibitively large amount of mem-
ory for scaling up to large geographic areas with sizable 
networks.

We  resolve this significant computational intensity 
challenge by  developing a parallel computing approach 
called P-E2SFCA to achieve rapid measurement of spa-
tial accessibility for serving the purpose of timely deci-
sion support. We parallelized the steps of calculating an 
egocentric graph of the road network within specified 
travel times, determining the convex hull of the nodes, 
and calculating the difference between convex hulls to 
derive 0–10, 10–20, and 20–30 min driving zones (lines 
5–14 in Fig. 4). After these steps, we also parallelized the 
portion of the steps that calculate intersections between 
the driving zones to aggregate statistics across different 
hospitals into a holistic measure of spatial accessibility in 
hexagon grids. An illustrative example of P-E2SFCA with 
four processors is provided in Fig.  5b. P-E2SFCA uses 
Python multiprocessing library [45] to support many par-
allel threads for scaling to large spatial domains.

As a result, accessibility measures are derived. How-
ever, the absolute values of the accessibility measures 
may not be important to revealing which areas have 
lower accessibility than other areas. Instead of using the 
absolute value, we converted the absolute values of acces-
sibility measure to the normalized measure as follows:

where Acci refers to the accessibility measure at residen-
tial location i.

To see which areas have relatively more resources given 
the COVID-19 confirmed cases in Illinois, we used an 
existing method to measure the percentage difference 
in model estimation [21, 46]. The spatial accessibility for 
COVID-19 patients was compared to the accessibility for 
population at risk by calculating the percentage differ-
ence, as:

A positive value of the comparison is derived if the nor-
malized accessibility for the COVID-19 patients is larger 
than that for population at risk, indicating the proportion 
of oversupply of ICU beds and ventilators. The zero value 
indicates that the accessibility for the COVID-19 patients 
and that for population at risk are identical. Otherwise, 
if the value is negative, then the patients might have 

(4)NormalACCi =
Acci −min(Acc)

max(Acc)−min(Acc)

(5)

Diff_ACC =
Normal ACCCOVID−19 − Normal ACCPopAtRisk

Normal ACCPopAtRisk

struggles to access healthcare resources. Because the val-
ues of the comparison are relative measurements, they do 
not directly quantify the magnitude of issues for particu-
lar areas to access healthcare resources.

Results
We used the P-E2SFCA method to assess the spatial 
accessibility of ICU beds and ventilators for popula-
tion at risk and the COVID-19 patients in Chicago and 
Illinois, USA, as of April 10, 2020. To address the tem-
poral dynamics in the COVID-19 spread and healthcare 
resources, the rapid measurement of spatial accessibility 
has been conducted daily and made available on an open 
platform called WhereCOVID-19 [47]. In addition, the 
results from the P-E2SFCA method reveal which areas 
are relatively more or less accessible to hospital beds 
and ventilators. Our analysis also helps identify the areas 
in which there are imbalances between the accessibil-
ity for the population at risk and that for the COVID-19 
patients.

Based on the accessibility measure in Chicago (Fig. 7), 
we found that the accessibility of hospital beds is spatially 
varying. The areas with spatial accessibility measures at 
or above the median are located near the center of Chi-
cago and extending northwestward. The areas with lower 
accessibility measures are located in southern Chicago. 
In other words, people living in central and northern 
Chicago have better accessibility to hospital beds than 
those living in southern Chicago, as hospitals and hospi-
tal beds are mostly located in central Chicago.

In addition, the difference in access to ICU beds and 
ventilators for the population at risk and for the COVID-
19 patients are statistically significant (t(6551.1) = − 2.4713, 
p < 0.05 and t(6551.2) = − 2.4896, p < 0.05), as shown in 
Fig. 8. This result implies that access to hospital beds and 
ventilators was similar for the population at risk and for 
the patients diagnosed with COVID-19. The median of 
the normalized accessibility measure of ICU beds and 
ventilators are equal to 0.7701 for population at risk and 
0.7769 for the COVID-19 patients, respectively. In gen-
eral, ICU beds and ventilators are distributed with high 
accessibility in Chicago.

As shown in Fig. 9, the spatial accessibility measure is 
also spatially varying across Illinois. For population at 
risk, the areas with higher spatial accessibility are rela-
tively uniformly distributed in Illinois (Fig.  9a, b). On 
the other hand, only some areas have relatively higher 
spatial accessibility measures for COVID-19 patients 
in Illinois (Fig. 9c, d). In central Illinois (e.g., Peoria and 
Springfield), COVID-19 patients have higher accessibil-
ity to ICU beds and ventilators than those living in the 
other areas of Illinois. We also found that COVID-19 
patients have lower accessibility in some areas of Chicago 
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(i.e., northeastern Illinois). While abundant resources 
are concentrated in Chicago (i.e., northeastern Illinois), 
the majority of the Illinois COVID-19 cases occurred in 
Chicago.

In Illinois, many residents may not have adequate 
access to ICU beds and ventilators (Fig. 10). This means 
that some may be struggling to get access to hospi-
tal beds and ventilators at the state level. Population in 
urbanized areas (e.g., Chicago, Peoria, Springfield) tend 
to have higher accessibility to ICU beds and ventilators. 
The median of the normalized accessibility measure is 
equal to 0.1145 for the population at risk (aged over 50) 

and 0.0023 for the COVID-19 patients, respectively. 
The difference in access to ICU beds and ventilators for 
population at risk and for the COVID-19 patients are 
statistically significant (t(8589.1) = 68.239, p < 0.001 and 
t(8669.8) = 68.086, p < 0.001).

Figure 11 presents the scatter plots elucidating whether 
there are imbalances between the spatial accessibility 
of ICU beds for population at risk (a) and for COVID-
19 patients (b) in Chicago (a), and that of ventilators for 
population at risk (c) and for COVID-19 patients (d) in 
Illinois. Each dot represents the accessibility measure at 
each hexagon. Spearman’s correlation coefficients are 

Fig. 7 Spatial accessibility measure in Chicago: a ICU beds for population at risk; b ICU beds for COVID‑19 patients; c ventilators for population at 
risk; d ventilators for COVID‑19 patients
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0.9937 (p < 0.001) for ICU beds and 0.9937 (p < 0.001) 
for ventilators in Chicago, and 0.7158 (p < 0.001) for ICU 
beds and 0.7107 (p < 0.001) for ventilators in Illinois, 
respectively. If the correlation coefficient is close to one, 
then there are less imbalances in the spatial accessibil-
ity between population at risk and COVID-19 patients. 
Although the accessibility measures are not significantly 
different in Chicago, there are some differences in Illi-
nois. This means that some areas may need additional 
ICU beds and ventilators while such resources may be 
abundant in other areas. In Fig.  11c, d, the areas hav-
ing higher accessibility for population at risk, but lower 
accessibility for COVID-19 patients could be understood 
as the areas in which additional ICU beds and ventilators 
may be needed. Furthermore, the number of COVID-19 
cases is relatively higher, compared to existing accessible 
resources in these areas. On the other hand, the areas 
having higher accessibility for COVID-19 patients, but 
lower accessibility for population at risk, could be defined 
as the areas in which ICU beds and ventilators may be 
abundant.

To identify which areas need additional ICU beds 
and ventilators to resolve the inequality in access to 
such resources for COVID-19 patients in Illinois, we 

compared the accessibility measure for COVID-19 
patients to that for population at risk, based on Eq.  (5). 
Figure  12 illustrates the measure difference in Chicago 
for ICU beds (a) and for ventilators (b), and in Illinois for 
ICU beds (c) and for ventilators (d). The circles identify 
the areas where ICU beds and ventilators may be abun-
dant. Compared to the accessibility for population at risk, 
COVID-19 patients have higher accessibility in north-
eastern Chicago. In other words, it is relatively more 
difficult for COVID-19 patients living in southwestern 
Chicago to access ICU beds and ventilators. This also 
implies that hospital resources are more densely located 
in northern Chicago. Therefore, it is important to con-
sider increasing the supply of ICU beds and ventilators 
on the southside via field hospitals and/or reopening 
recently closed facilities.

At the state level, ICU beds and ventilators are not 
equitably distributed, especially considering the number 
of COVID-19 confirmed cases. In Fig. 12 (c) and (d), the 
circles represent the areas in which ICU beds and ven-
tilators may be abundant, respectively. Paris is the most 
accessible area for both ICU beds and ventilators, com-
pared to the number of COVID-19 patients, and followed 
by Effingham, Hopedale, Princeton, and Carrollton. 

Fig. 8 Accessibility measure in Chicago: a ICU beds for population at risk; b ICU beds for COVID‑19 patients; c ventilators for population at risk; d 
ventilators for COVID‑19 patients. Note: the dotted lines refer to the average of the accessibility measure. Y‑axis denotes the number of hexagons, 
since the accessibility measure is represented through the hexagons
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We found that additional ICU beds and ventilators are 
needed in the Chicago area, despite the substantial num-
ber of such resources that are already available. Given 
that COVID-19 infections mostly occurred in Chicago, 
additional ICU beds and ventilators may need to be allo-
cated to Chicago, especially the southwestern Chicago 
area.

Socioeconomic and demographic characteristics in high 
and low accessibility areas
To understand the socioeconomic and demographic 
characteristics in the areas with high and low accessibil-
ity of ICU beds and ventilators, we examined the patterns 
of the socioeconomic and demographic characteristics 
in Chicago based on spatial accessibility measures as 

Fig. 9 Accessibility measure in Illinois: a ICU beds for population at risk; b ICU beds for COVID‑19 patients; c ventilators for population at risk; d 
ventilators for COVID‑19 patients
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Chicago is the one of the hardest-hit cities in the US. We 
calculated z-scores for each SVI theme by comparing 
them to the average scores in Illinois. As a relative meas-
urement, z scores for each SVI theme represent to what 
extent the people living in high (i.e., upper 25% in accessi-
bility measure) and low accessibility areas (i.e., lower 25% 
in accessibility measure) are relatively more vulnerable 
compared to the general population in Illinois. One rep-
resents that people are the most vulnerable, and negative 
one (− 1) represents that people are the least vulnerable.

Figure 13a shows the z-scores for people living in high 
and low accessibility areas in Chicago based on acces-
sibility measures for population at risk, and (b) depicts 
z-scores for people living in high and low accessibil-
ity areas in Chicago based on accessibility measures for 
COVID-19 patients. The results indicate that people liv-
ing in areas with low accessibility are more vulnerable to 
the external stresses, such as the COVID-19 spread, in 
terms of socioeconomic status, housing type and trans-
portation, and household characteristics and disability. 
However, it is showed that people living in low accessi-
bility areas are less vulnerable than people living in high 
accessibility areas in terms of SVI theme on minority 

status (i.e., racial/ethnic minority) and language (i.e., the 
proficiency level of English). This can be explained as fol-
lows. Given that the SVI theme on minority status and 
language is a composite score of these two factors, an 
example of the most vulnerable people would be minor-
ity and non-English speakers. For example, the majority 
of population in a low accessibility area, southern Chi-
cago is African-American and native English speakers. 
In other words, they are vulnerable in terms of minority 
status, but not vulnerable in terms of native language. 
Therefore, this population composition may be responsi-
ble for lower vulnerability in low accessibility areas than 
that in high accessibility areas, in terms of minority status 
and language theme in SVI.

Computational performance
We assessed the computational performance of 
P-E2SFCA using the runtime in seconds of both 
P-E2SFCA and E2SFCA implementations and ran both 
sets of code 10 times each to calculate an average runt-
ime in seconds. The computational experiments were 
conducted using CyberGIS-Jupyter and Virtual ROGER 
[29, 48]. For computing the accessibility in Chicago, 

Fig. 10 Accessibility measure in Illinois: a ICU beds for population at risk; b ICU beds for COVID‑19 patients; c ventilators for population at risk; and 
d ventilators for COVID‑19. Note: the dotted lines refer to the average of accessibility measure. Y‑axis denotes the number of hexagons, since the 
accessibility is represented through the hexagons
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P-E2SFCA executed at 6 times faster (i.e., an average 
of 942  s across ten runs to an average of 147  s) using 4 
computing cores not only by parallelizing computation-
ally intensive parts of E2SFCA, but also by efficiently 
aggregating results returned from parallel computing 
resources.

Concluding discussion
Although extensive studies have focused on forecast [49] 
and exploration of space–time patterns and trends of 
COVID-19 cases [50, 51], research questions about the 

availability and capacity of healthcare resources (e.g., hos-
pital beds, ICU beds, ventilators, healthcare personnel, 
and testing resources) for treating COVID-19 patients 
need rigorous investigations. This study has addressed 
the question of to what extent the population at risk 
and COVID-19 patients in Illinois, USA have acces-
sibility to healthcare resources. Specifically, we com-
pared the spatial accessibility for the population at risk 
(aged over 50 years) to that for the COVID-19 patients. 
The comparison identifies which geographic areas may 

Fig. 11 Accessibility measure: a ICU beds in Chicago; b ventilators in Chicago; c ICU beds in Illinois; d ventilators in Illinois
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need additional healthcare resources to accommodate 
COVID-19 patients.

Specifically, our findings based on the P-E2SFCA 
method provide an improved understanding of spatial 
accessibility of ICU beds and ventilators for the popu-
lation at risk and the COVID-19 patients in Chicago 
and Illinois, USA, as of April 10, 2020. In addition, our 
analysis helps identify the areas in which there are imbal-
ances between the accessibility for population at risk 
and that for COVID-19 patients. The results also reveal 
which areas have relatively higher spatial accessibility of 
ICU beds and ventilators. By the comparison of acces-
sibility measures for the  general population to that for 

COVID-19 patients, we found which areas need addi-
tional healthcare resources to improve spatial acces-
sibility in Illinois. In general, there are no significant 
difference in spatial accessibility measures between the 
population at risk and COVID-19 patients in Chicago. 
Nonetheless, given that confirmed COVID-19 cases in 
southern Chicago may exceed the capacity of  available 
healthcare resources, additional resources should be allo-
cated to southern Chicago. At the state level, some areas 
have much higher accessibility for COVID-19 patients 
than for population at risk. Compared to the number of 
confirmed cases, there are more abundant resources in 
such areas. On the other hand, the Chicago area needs 

Fig. 12 Comparison of spatial accessibility measure: a ICU beds in Chicago; b ventilators in Chicago; c ICU beds in Illinois; d ventilators in Illinois

Derrick Burt

Derrick Burt

Derrick Burt

Derrick Burt



Page 15 of 17Kang et al. Int J Health Geogr           (2020) 19:36  

more resources than other areas, considering much more 
confirmed cases in Chicago.

Given that the number of COVID-19 cases keeps 
increasing worldwide, the capacities of ICU beds and 
ventilators need to be properly managed. Other research-
ers reported that the needs of hospitalization and ICU 
beds for COVID-19 patients may exceed the current 
capacity in a number of US cities if the COVID-19 out-
breaks were to take place like in Wuhan, China [52]. In 
this context, it is important to find appropriate ways to 
effectively and efficiently monitor and manage the capac-
ities and needs of COVID-19 healthcare resources. Our 
approach helps to reduce the computation time to solu-
tion for rapidly measuring the spatial accessibility to 
COVID-19 healthcare resources in a dynamic and timely 
manner. Our study has achieved this important and novel 
capability by being able to conduct spatial accessibility 
measurement daily with analysis results made available 
on an open platform called WhereCOVID-19 [47].

Our approach can be applied to other countries in 
the context of COVID-19 pandemic. For example, the 
COVID-19 infections have been dominant in the city of 
Daegu in South Korea and local government in Daegu 
has committed to a rapid expansion of hospital beds [53]. 
The COVID-19 has spread to Seoul and another major 
city (i.e., Daejeon) [54]. In this regard, our approach to 
looking at the demand and supply together would be 
helpful for spatially identifying the shortages of COVID-
19-related healthcare resources. One remaining issue is 
that the dataset of hospital locations and the available 
number of ICU beds and ventilators at each hospital may 
not be widely available in many countries to be used in 
assessing spatial accessibility.

Public health agencies and stakeholders such as IDPH 
need to determine in a timely fashion where COVID-19 
healthcare resources are not adequately provisioned to 
meet the evolving demand. The dynamic spatial acces-
sibility maps generated using our approach and made 
available on the WhereCOVID-19 platform have served 
this critical need. The most common use of the spatial 
accessibility maps is to identify geographic areas where 
spatial accessibility to COVID-19 healthcare resources 
is at the lowest level. Public health officials are there-
fore alerted to make sure these areas get additional sup-
port for improving access to specific types of healthcare 
resources. Our approach integrates cutting-edge cyber-
GIS and the state of the art of spatial accessibility meas-
urement to derive such important information in an easy 
to understand and timely fashion, and thus represents a 
breakthrough in advancing health geographic knowledge 
for the fight against the COVID-19 crisis.

This study has several limitations. The accessibil-
ity measures near state boundaries might be under-
estimated because we did not include the hospitals 
in neighboring states (e.g., Indiana, Wisconsin, Iowa, 
Kentucky, and Missouri), which Illinois residents might 
visit. Because there are different population distribu-
tion patterns, the catchment size parameter needs to 
be chosen to account for the difference of such pat-
terns [55]. Therefore, assessing the impact of varying 
catchment size on the spatial accessibility measure 
[56] would be worth future research. In addition, the 
COVID-19 cases may not be exhaustively counted 
because many cases were not confirmed due to having 
no or light symptoms [57]. Although our results may 
help to identify the areas where resources are abundant 
or insufficient, we did not assess how much resources 

Fig. 13 Social vulnerability characteristics in high and low accessibility areas based on the spatial accessibility measure for population at risk (a) and 
that for COVID‑19 patients (b)
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need to be allocated, which should be another future 
research topic. To more realistically address the 
dynamic spatial accessibility issues in the COVID-19 
context, it would be desirable to consider near real-
time changes of healthcare resources such as the num-
bers of ICU beds and ventilators.

Given mass testing facilities could support a rapid 
response against COVID-19 spreads [58], a compre-
hensive measurement of accessibility of ICU beds, ven-
tilators, and testing facilities would directly address the 
COVID-19 control and preparedness. Unfortunately, 
there is no publicly available dataset for the testing 
capacity at each hospital or other COVID-19-related 
facilities. While our cyberGIS approach to parallel 
computing of E2SFCA achieves significant computa-
tional performance gains, we found that partitioning 
of road networks is necessary for scaling P-E2SFCA to 
spatial domains beyond the state level in the US. Future 
work needs to be done to determine the most optimal 
means to resolving the computational intensity, by lev-
eraging network partition algorithms such as Voronoi 
Clustering based on Target-Shift [59, 60], especially 
for the purpose of applying the analysis to national and 
international assessment.

In summary, rapidly measuring spatial accessibility of 
healthcare resources is critical to the fight against the 
COVID-19 crisis, particularly for better understanding 
how well the healthcare infrastructure is equipped to save 
people’s lives. As U.S. federal and state governments (e.g., 
HHS, IDPH) have been strongly committed to improving 
spatial accessibility of healthcare services, measuring spatial 
accessibility and identifying areas with a shortage of impor-
tant public health resources in the context of COVID-19 is 
critical for policymakers and public-health officials’ prepar-
edness and response actions. At the same time, strict quar-
antine, social distancing, and isolation of known cases by 
individuals and communities are important to slow down 
the spread of COVID-19 [61, 62], which in turn, help to 
address the important spatial accessibility issues.
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